//Artificial Space, First Realization -- SuperCollider Code
// single channel processing interface

// hi pass/lo pass/ring mod/delay/limiter

// jesse pearlman karlsberg 31 october, 13, 15 december 2002

//input channel three

//high and low pass filters with ring modulator, delay, & compressor
//similar patches exist for audio channels 5
//and 7, differing only with respect to their
//pan settings and input channel

//DESCRIPTION

//this program allows for various combinations of digital signal
//processing of a single channel of audio input. the processing may
//include high and low pass filters with variable frequencies, a ring
//modulator with variable modulation frequency or modulation
//frequency assigned to pitch following, a delay of the input signal
//in addition to other processing, and a limiter with variable
//threshold. the program sends the output signal through two azimuth
//panners. one goes to a fixed pan position corresponding to one or
//both of a pair of loudspeakers. the other can be focused on any of
//the third through fifth output channels (directed to headphones)
//with a width ranging from one to three channels wide.

//PERFORMANCE INSTRUCTIONS

//a performance of artificial space is in three movements. movements
//should be approximately the same length, but that length may vary
//according to the performance situation. processing interfaces for
//all three input channels (connected to microphones) should be run
//simultaneously, and the output channels should be patched to a pair
//of loudspeakers (chans 1 and 2), and three headphones, one paired
//with each microphone (chans 3, 5, and 7). each processing interface
//has a corresponding set of presets (one for each section) which
//should be loaded prior to a performance, and cycled through prior
//to each section. the presets set the initial processing for that
//section and the pan positions for that section, but the processing
//(though not the pan) may be changed during a section. the three
//performers in addition to the processor should wear the headphones
//for the duration of the performance and improvise in response to
//the sounds they hear over the headphones.

//THE PRESETS

//each set of presets contains three presets. the first set is panned
//to the headphone corresponding to the input channel with some ring
//modulation and a 1 second delay. the second set is panned to all
//three headphones with a long delay and no other processing. the
//third set is panned like the second set with ring modulation, some
//pitch following, and a 1 second delay.

SC.chans = 5; //five channels of output

Preset.funcInit({arg items, lpfreq, hpfreq, rmfreq, delay,
gainin, delvol, gainout, onoffl, onoff2,
thresh, panpos, width, scope = \ScopeV;

items.name ("processing for first microphone");

items.setItems(

n

lpfreq .freq(20000) .name_("low pass "),
hpfreq .freq(20) .name_("high pass"),
rmfreq .freq(200) .name_('"ring mod "),
delay .sp(1, 0.1, 10) .name_("delay tm "),
gainin .db(0) .name_("gain in "),
delvol .db(0) .name_("delay vol"),

)y

gainout .db(0) .name_("proc vol

onoffl .sp(0, 0, 1) .name_("rm on/off"),

onoff2 .sp(0, 0, 1) .name_("pf on/off"),
thresh .db(15) .name_("threshold"),
panpos .sp(0.8, 0.8, 1.6) .name_("pan position"),
width .sp(1l, 1, 3) .name_("pan width "y,
scope

)i

items.sound_({
var in, pitch, haspitch, hilo, out;

//the input
in = AudioIn.ar(3, gainin.kr); //input from channel 3
#pitch, haspitch = Pitch.kr(in); //pitch following

//the processing--
//high and low pass filters and ring modulator
hilo =
(LPF.ar(//low pass filter
HPF.ar(in, hpfreq.kr), //high pass filter
lpfreq.kr
) * (1 - onoffl.kr))
+
(LPF.ar(//ditto
HPF.ar(in, hpfreq.kr),
lpfreq.kr
) * (SinOsc.ar(//with ring modulator
//slider controlled
(rmfreq.kr * (1 - onoff2.kr))
//pitch-follow controlled
+ (pitch * onoff2.kr)
)) * onoffl.kr);

DelayL.ar (//delay of input
//delayed input times out volume

in * delvol.kr, 10, delay.kr,
//processed sound times out volume
1, hilo * gainout.kr

out

)i

Compander.ar(//compander...
out, out,
thresh.kr, 1, 0 //...as a limiter

out

)i

//output
Scope.ar(
scope.myView,
PanAz.ar (//pan to headphones
SC.chans, out,
//variable pan position and width
panpos.kr, 1, width.kr
) +
PanAz.ar(//pan to loudspeakers
SC.chans, out,
//mono pan on channel 1 loudspeaker
0, 1, 1

)i
1)

}) .show

